

Processor Design

Implications of Operating System SW

Professor Jari Nurmi Institute of Digital and Computer Systems Tampere University of Technology, Finland jari.nurmi@tut.fi email

Allocation	of memory
	ng isolation or sharing of resources
I/O servic	es for processes
A library	of common service programs
■ Mechanis	sms to enter and leave layers of the OS
☐ Interproc	ess communication and synchronization
■ Memory r	management mechanisms
☐ The conte	ext switch

Doubly Linked Lists

- ☐ Queues of records, consisting of
 - O a header with pointers to the first and last record in the queue
 - 0...N records with pointers to the next and previous record
 - O additionally the records include some amount of data
 - O the pointers can be called forward (FLINK) and backward link (BLINK)
 - O the links can actually be displacements instead of absolute pointers

Use of Doubly Linked Lists

☐ Used by the OS for process and memory management O e.g. queue of timeshared processes in run, list of free memory blocks ☐ E.g. a process control block describes the full context O by storing all register contents or by storing a (stack) pointer

Required Features for OS and Shared Data 1

- ☐ Change four links of a shared list
 - O an interrupt in between may cause a context switch
 - O the new process may find half-linked elements
 - a record or the whole list can be lost or the list may remain incoherent
 - O a semaphore and atomic test-and-set/test-and-clear of it is required
 - O sometimes disabling all interrupts may also be a sufficient solution
- ☐ For multiprocessors this is not enough
 - O the other processor may access a cached semaphore
 - O some areas of the memory have to be uncacheable (indicated in PTE)
 - O this is good for I/O space as well...
 - O some memory has to be always resident in memory (OS, interrupt handlers)

Required Features for OS and Shared Data 2

- ☐ Protection of memory areas
 - O this is accomplished by the memory management hardware
 - O based on allocated memory pages and related protection bits in PTE
- A system timer hardware is needed if the OS is time-slicing tasks
 - O provides also software timer service for the user programs
 - O may be also a complete real-time clock device

Helping The Compiler

- ☐ The HLL compiler does not set any specific requirements
- ☐ However, the compiler will appreciate
 - Orthogonality of instructions
 - A lot of registers
 - General-purpose registers
 - O Software stack rather than HW stack
- ☐ Processor architectures with direct support to a HLL
 - E.g. Forth, C, java, ...
 - O Complex addressing modes targeted at certain HLL operations
 - Or extensive general support for HLL structures like procedure calls
 - O Have generally been unsuccessful after all
- ☐ Provide primitives, not complete solutions!

End of SW impacts

next we will look at arithmetics and datapath construction