Processor Design

Introduction, part |

Professor Jari Nurmi

Institute of Digital and Computer Systems
Tampere University of Technology, Finland
email jari.nurmi@tut.fi

$ Background

O Some trends in digital system integration
Q System-on-Chip implementation driven by
® developing circuit technologies (Moore’s law)
® economics of miniatyrization
O Embedded systems are everywhere
® cars, elevators, machines, industrial applications
® household devices, office equipment, games, toys
® telecommunication equipment, video and audio systems
Q Increasing software content of the integrated systems
e more functionality integrated on a chip
® reuse of processors and software modules
e part of the functionality by programmable processor cores
* RISC
* DSP
* microcontroller

* VLIW
* application specific architectures

$ Consequences of the Trends

O Benefit of the knowledge of processor design aspects in
O digital design (including application specific architectures!)
O embedded systems design
Q computer / processor design

general-purpose performance

$ Course Target

O The course will deepen the knowledge on
Q processor operating principles
Q design (and choice) of processor architectures
Q processor implementation
Q analysis of performance and other characteristics

FOCUS OF THE COURSE
computer processors .

designer choices

I I [o I o oy

$ Course Outline

processor basics revisited

processor design flow

instruction set design

requirements set by the operating system
execution unit, arithmetics

pipelining and parallelism

control and interrupts

memories, exploiting memory hierarchy
cache and virtual memory management
input/output system

examples of processor architectures
properties of embedded processors

DSP design specialties

protocol processors

benchmarking processor performance and economics

O User's view

(*

$ Different Views of a Computer

Q software
QO speed, storage capacity
Q peripheral device functionality

O Computer architect’s view

QO concerned with design & performance

(* according to Heuring — Jordan)

Q optimum programming utility and implementation performance

Q design of hardware to execute instructions
QO use of benchmarking tools and other measures
O balanced performance of different building blocks

O performance needs satisfied at lowest cost possible

O Logic designer’s view

Q designs the machine at the logic gate level

O determines whether the architect meets cost and performance goals

$ Instruction Set Architecture (ISA)

O ISA is the programmer’s view of the processor

O Instruction set — the collection of all machine operations
(and the related mechanisms to access operands)

O Programmer sees set of instructions, along with the
machine resources manipulated by them

O ISA includes

Qinstruction set
Omemory
Oprogrammer-accessible registers of the system

$ Instruction Set vs. Organization

O The instructions (and the programmer’s view of the
processor) are the software interface to the processor

O The instruction set may be implemented using different
organizational architectures

Q e.g. different number of data buses, execution units, cycles per
instruction. . .

O some organizations are better for the given instruction set, some
worse

Q the cost and performance of the organization

$ Architecture vs. Implementation

O The processor architecture may have several (different)
implementations
O e.g. microprogram or hardwired control
Q different circuit technologies
O avariation of hidden features (registers etc.)
Q different amounts of pipelining
O different amounts of parallelism (e.g. superscalar)

O this is a cost and performance issue

$ Programmer’s Models

M6800 18086 VAX11 PPC601
(introduced 1975) (introduced 1979) (introduced 1981) (introduced 1993)
7 0 15 87 0 31 0 0 63
T
A [AX ! RO [& e
5 B | Data _|BX | 12 general _| - ?4"3“]
; registers urpose oating point
|6 special __|IX g CcX L rpegi’;ers _|R11 | " registers 4
purpose | gp | DX AP | 31
[registers —]
PC FP 0 a1
SP
Status - Address — SP T 0
| and _|BP b | 32 32-bit —|
count sl | general
[~ registers — oI purpose
[— registers —|
PSW | 31
L _lcs
T Memory T 0 31
- 216 bytes — | segment —{PS | 232 pytes | © T
| ofmain _| | registers _|SS N of main | More than 50
memory ES memu_{y 32-bit special_|
- itv — |- capacity —
capacity purpose
P o S
Status More than 300
Fewer P :
than 100 i instructions .
instructions L 220 pytes | 0 | 252 bytes | 0
of main of main
I~ memory | memory
- capacity — - capacity —
2201 1 2521
More than 120 More than 250
instructions instructions

Source: Heuring — Jordan: Computer Systems Design and Architecture

$ Architecture Types

O Load-store
O operations performed to registers
O Register — memory
O possible to have one source operand in memory
O Register+memory
Q possible to have operands and result destination in memory

O Affects the coding style considerably
O Affects also the achievable clock cycle time and CPI

$ Dynamic vs. Static Efficiency

O Performance-wise the dynamic efficiency i.e. number of
instructions (and the time used) to run a program is
important

O Static efficiency
QO number of instructions in a program
Q instruction word length

O The latter counts maybe even more in embedded and
integrated systems

O The program size is determined by two variables
Q instruction size (e.g. 16/32 bit)
Q instruction efficiency

® how much "work” does a single instruction do
® RISC/CISC issues etc.

$ Orthogonality

O Generally, the property of an architecture allowing the use
of the same
Q register set
Q data types
O addressing modes
Q etc.

for all (as many as possible) instruction
O Opposite: specific registers, varying modes

O Orthogonality makes the processor a good target for a
compiler (and manual coding!)

$ The Holy Trinity

CPI = cycles per instruction
t. = clock cycle time
N = instructions per program

Oo0oao

O execution time T, = N x CPI xt,

O Improving performance by
Q decreasing number of instructions
QO decreasing CPI
Q decreasing tg

$ Arithmetic — Logic — Control

O Instructions can be categorized to
O arithmetic instructions
QO logic instructions
QO change-of-flow (control) instructions
O data transfer

ﬁ Data Types

O Integers
QO words
O half-words, bytes
O Fixed-point fractions
O number of integer and fraction bits
O 2's complement, sign-and-magnitude, 1's complement
O Floating-point (real) numbers
Q single or double precision
Q different formats
Decimal digits
Characters

Bits (bit vectors)

Oo0oao

$ Fixed -point vs. Floating -point

0 Not just a data format . . .
O Precision vs. dynamic range

O Implementation complexity

$ Branches

O Different types
Q (conditional) branch
Q jump
Q subroutine calls (branch and link)
Q returns

O Denoted branch condition compared to corresponding
status bits
O Styles include
Q test...branch instruction pair
Q "integrated” branch instructions (implicit flags)
O selective setting of flags in any instruction
O with and without delay slots

$ Addressing Modes

O Immediate 128 OxFFFF 0b1010
O Absolute (Memory) #0x2000 loop_start
O Register Rn
O Indirect [Rn]

Q register indirect

O memory indirect (deferred) [mem_addr]
O Indexed [Ri + Rj]

O Displacement (base+offset) [Ri+ 7]

O Autoincrement/decrement etc. variations
[RN]++
--[Rn]

End of 15t part of introduction

2"d part will concentrate more on hardware

10

10

